Proposal for FY14 V&V Challenge Workshop

SAND2013-4090C

Greg Weirs, Brian Carnes, Ken Hu, George Orient, Vicente Romero, Laura Swiler
Sandia National Laboratories

Presented at the ASME V&V Symposium
24 May, 2013

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Motivation & Vision

• V&V field is developing fast
 – PSAAP schools beginning to use V&V
 – 2012 ASME V&V Symposium abstracts
 – Workshops help move the field forward

• Vision – series of workshops
 – Range of topics: Verification, Validation, UQ
 – Range of audiences: Industry, Academia, Labs
 ➔ Increase awareness, interest, and innovation
Current Trend - Challenge Problems

• Challenge problems are popular
 – SNL Fracture Challenge (2012)
 – USACM UQ Benchmark (2013)
 – NASA Langley UQ Challenge (2014)

• UQ field often focuses on comparing methods

• V&V workshop should focus on assumptions, choices, impact on intended use of models
 – Emphasize experience over tools and methods
Outline

• Motivation and Vision

• Workshop
 – Timeline
 – Initial Plans

• Draft of a Challenge Problem
 – Concepts
 – Expectations

• What’s Next?
The Workshop

• Workshop timeline
 – Summer 2013 – Present draft problem at conferences
 – Fall 2013 – Finalize problem, formally announce workshop
 – Summer 2014 – Hold workshop (ASME V&V Symposium?)

• Hope to partner with ASME
 – Other possibilities: USACM, SIAM, or independent workshop
 – Will meet w/ steering committee 21 May → update slide
Goals ↔ Topics

• Goals
 – Engage with the V&V community
 – Emphasize experience over tools and methods
 – Demonstrate the state of the art

• Topics
 – Wide range of methods, theory required
 – Choose topic for which many approaches exist
 → Diversity in ideas
 – No methods development
What is the State of the Art?

Gaps: synthesis of methods, interpretation of results

• “Aggregation” of uncertainty
 – Combine uncertainty of QoI due to multiple sources
 – Parametric uncertainty
 – Experiment-related uncertainty
 – Model form uncertainty
 – Numerical uncertainty

• Decision making with V&V/UQ information

• “Relevancy” of information throughout a hierarchy of analyses, a.k.a. rollup

Green color = V&V/UQ feature of interest
The Problem

• Storage tank – contains some liquid, under pressure
• Experiences a range of conditions
 – Temperature, Loading
• One tank fails from tensile overload

• Use test data and modeling to determine the probability of failure
• Decide whether to retire all tanks
Problem Features

• Relevant: Multiple levels → V&V hierarchy
• V&V/UQ topics: require calibration, solution verification, validation, aggregation
• ‘End-to-end’ problem
 – Data and models → prediction, uncertainty, credibility
 → Decision informed by Modeling and Simulation
 – “Realistic”, intuitive, and interesting story
• Physics based, but no physics expertise required
 – Computationally affordable; unclassified, unlimited release
The Story → V&V Hierarchy

• Intended Use: Predict Probability of Failure at a range of temperatures
• Establish credibility of models → V&V Hierarchy

“System Level”
- Calibrate system model
- Validate @ Mild conditions
- Predict @ Extreme conditions

“Physics Level”
- Calibrate liquid property
- Calibrate failure threshold
- Calibrate material model

Domains: Calibration Validation Application
The Story

- Intended Use: Predict Probability of Failure at a range of temperatures
- Establish credibility of models

V&V Hierarchy

System Level
- Calibrate system model
- Validate @ Mild conditions
- Predict @ Extreme conditions

Physics Level
- Calibrate liquid property
- Calibrate failure threshold
- Calibrate material model

Domains: Calibration Validation Application

Quarter symmetric cylinder showing Stress (colors) and exaggerated displacement under pressure-only load

Simply supported Centerline

→ Calibrate liquid property
→ Calibrate failure threshold
→ Calibrate material model
The Story → V&V Hierarchy

- Intended Use: Predict Probability of Failure at a range of temperatures
- Establish credibility of models →

Domains: Calibration Validation Application

Quarter symmetric cylinder showing Stress (colors) and exaggerated displacement under pressure and hydrostatic load

Simply supported Centerline
System Model Features

• Runs quickly → Not limited by methods
• Physically intuitive
 – Pressurized vessel + Liquid load → Displacement & stress
• Non-ideal convergence behavior
 – Interesting solution verification problem
• Many parameters, nonlinear responses
 – Non-trivial UQ problem
• Modeling limitations
 – Calibration of parameters w/ known model form error
• Sub-models
 – Material properties
 – Liquid properties
More Details

• Multiple “levels” of complexity
• Physics level
 – Temperature dependent liquid and material properties
 – Multiple models \(\rightarrow\) Model form uncertainty
 – Measurement limitations, Variation in materials
 • Epistemic, parametric uncertainty
 • Aleatoric, parametric uncertainty
• System level (Full tank)
 – Combine all sources of uncertainty \(\rightarrow\) Aggregation
 – Use the V&V hierarchy to organize multiple analyses
 – Make a decision
Problem Statement

• Calibration
 – Characterize uncertainty in the model parameters
 – Calibrate some or all model parameters

• Validation
 – Compare given tank test data with predictions

• Prediction
 – Probability of failure under two scenarios

• QoI’s are specified, V&V hierarchy is specified

• All data will be supplied from a hidden “truth” model
• Tank model will be supplied, with multiple meshes
Expectations

• Development of uncertainty & statistical models required
• NO development of physics models
• Many choices: how to treat uncertainty, how many function evaluations, etc.
• No requirements on approaches
 – Supply references, suggestions, forum for discussion
• MUST make an end decision based on prediction, uncertainty, credibility
Context: Is this an interesting problem?

- Current V&V Hierarchy → 5 steps
 - Emphasize ideas for aggregation
- Big picture: Pyramid view of hierarchy
“Hidden” Features

Not explicitly asked for, to reduce problem scope

• Experiment-related uncertainty
 – Unknown Experimental Conditions
 – Imprecise measurements
 – How to propagate this to the QoI?

• Relevancy or “Rollup”
 – Info from Calibration, Validation, & Application domains
 • Is it all relevant?
 • Is the model valid (for intended use)?
 • Is the model useful?
Remaining work + Feedback Requested

• Finalize Scope
 – Problem could become unreasonably large

• Gauge community’s interest level

• Determine schedule and venue
 – Fall 2013 – Announce workshop

• More Promotion
 – USNCCM (July) – nearly final problem statement
Goal of this workshop

• Pose a problem with many concepts
• Give participants choices
 – Analyze some vs. all of the pieces
 – How to model uncertainty
 – How to aggregate uncertainty
 – Make a final decision, informed by model predictions
• What is the impact of UQ/V&V choices?
• Provide different perspective from UQ community
• Increase awareness, interest, innovation in V&V
Contact Information

• Website: https://share.sandia.gov/vvcw
 – Still under development – Coming soon!

• Email: Coming soon
 – If interested in hearing more, send an email to be placed on a distribution list