Learning Objectives

After completing this module, you should be able to:

• Recognize scenario recommendations from INFCIRC/225/Rev.5
• Describe the purpose of scenario analysis in the context of evaluating physical protection system (PPS) performance
• Discuss the four phases of the Scenario Analysis Process
• Create adversary attack scenarios
• Describe a process for selecting final attack scenarios
INCIRC/225/Revision 5 Guidance Scenario Development

- Using the DBT, the operator should define credible scenarios by which adversaries could carry out sabotage of nuclear facilities and nuclear materials.
- When defining scenarios, the operator should consider the location of the nuclear facility and all nuclear materials.
- Sabotage scenarios should consider external and/or insider adversaries who attempt to disperse nuclear material or to damage or interfere with equipment, systems, structure components or devices, including possible stand-off attack, consistent with the State's threat assessment or DBT.
- The operator should design a PPS that is effective against the defined sabotage scenarios and complies with the required level of protection for the nuclear facility and nuclear material.

What Is Scenario Analysis?

Scenario analysis: A methodology for analyzing physical protection system effectiveness (P_e) by considering several possible adversary scenarios.

- Allows more detailed analysis of the attack, defense, results of path analysis.
- Focuses on identifying vulnerabilities.
- Contributes to:
 - Overall PPS design
 - Contingency plans
 - Policies and procedures
 - Interagency coordination.
Purposes of Scenario Analysis

• Provide basis for level of confidence about PPS performance
• Create “robust” security plans to match and fully use the capabilities of the PPS design
 ▪ How?
 • Develop details of realistic adversary attack plan
 – Specific, coordinated tasks and timeline for all attackers
 • Develop detailed characterization of how PPS and response should behave, based on performance testing and site plans
 • Simulate how PPS and response behave during attempted adversary attack scenario
 ▪ **IMPORTANT**: Overall physical protection system effectiveness is represented by effectiveness against a few specific scenarios
 • No attempt to determine worst-case scenario

Scope of Scenario Analysis

• Identify key questions
 ▪ General analysis
 • How effective is the current PPS?
 • How effective is the existing response force strategy?
 ▪ Specific analysis
 • Procedure
 • Potential upgrade
• Identify major considerations
 ▪ What PPS configuration should be tested?
 ▪ What are the threat numbers and capabilities?
Scenario Analysis Process

1. Design
 - Identify Stakeholders
 - Create scoping agreement
 - Oversee scenario development

2. Develop
 - Determine attack scenario characteristics
 - Develop attack scenarios
 - Review and select attack scenarios

3. Implement
 - Gather and determine teams
 - Prepare for simulations
 - Simulate the attack
 - Record events

4. Evaluate
 - Conduct evaluation meeting
 - Determine vulnerabilities
 - Recommend changes and upgrades

Scenario Development
- Based on low probability of interruption/probability of neutralization (P1/P2) or delay paths
- By expert ‘Red Teams’

Scenario Evaluation
- Tabletop exercise
- Computer combat simulation
- Force-on-Force (FoF) exercises
Identify Stakeholders

- Identify people who are responsible for the design, implementation, evaluation, and risk acceptance of the PPS
 - Competent authority
 - Response force management
 - Vulnerability analysis team
 - Adversary planning subject-matter experts (SMEs)
 - Security management
 - Facility operations
 - Offsite response
 - Other required people

Scoping Agreement

Scoping Agreement: A contract among appropriate stakeholders that identifies parameters of scenario analysis

- Defines requirements
- Design basis threat (DBT) statement
- Characterizes facility
- Identifies targets (type of targets)
- Identifies credible SMEs for attack planning
- Determines types of attacks and numbers of scenarios (sabotage/theft)
- Identifies and agrees on assumptions
- Determines type of insider (passive/active, etc.)
- Determines picture-in-time
- Agrees on simulation tools and the process for using them
Oversee Scenario Development

- Stakeholder(s) familiar with the design and evaluation of the PPS should be included in scenario development.

- All participants should:
 - Agree to confidentiality of all site/adversary information.
 - Remain unbiased to site or adversaries.
 - Ensure the adversary scenarios are within the parameters of the scoping agreement.
 - Ensure accuracy of the PPS and target information:
 - Thickness of vault walls.
 - Assessment capability.
 - Response capability.

Scenario Characteristics

Attack Scenario: A time ordered, detailed description of an adversary attack used in analyzing P_E.

- For scenario analysis to be of maximum value, scenarios should be:
 - Detailed.
 - Credible.
 - Limited to threats within the DBT.
 - Well documented.

- Consider scenarios from Path Analysis:
 - Add scenario details to these paths.
 - Add supporting team plans to assist these attackers.
 - **IMPORTANT:** The most-vulnerable P_j path from Path Analysis may be a poor basis for a scenario.
Adversary Scenario Definitions

Adversary Strategy: Short description of the scenario used to achieve the adversary’s objective

Defeat Strategy: General method used to defeat a path element or a PPS function

Defeat Method: Way to prevent a component within a path element from accomplishing its purpose or function

Adversary Strategy

- Two classes of adversary scenarios
 - Direct: Adversary follows a direct path to target
 - Adversary goal: Minimize P_1 by defeating system detection or delay elements
 - Indirect: Adversary attacks PPS infrastructure before attacking target
 - Adversary goal: Minimize P_1 or P_N to:
 - Increase response time
 - Decrease response numbers
 - Disable critical systems
Defeat Strategies and Methods

- Three basic adversary defeat strategies and methods can be used
 - Avoid, degrade, or disable detection systems
 - Include entry control and contraband detection systems
 - Degrade, disable, or circumvent delay systems
 - Degrade or eliminate response
 - Identify
 - Weak links
 - Single points of failure

Scenario Development Planning and Complexity Factors

- The best attack scenario for the adversary does not always use all of the equipment allowed within the design basis threat
 - Not all of the equipment will provide an advantage to the adversary
 - Adding equipment may increase the complexity of the attack scenario
- Coordinating actions and synchronizing time between groups increases difficulty
Adversary’s Perspective for Main and Supporting Teams

Structured Approach to Create Scenarios

- Create a range of scenarios
 - Identify site vulnerabilities
 - Exploit the identified site vulnerabilities
 1. Build scenarios
 2. Review and select final scenarios based on criteria
Identify Site Vulnerabilities

• Collect Site Specific PPS Data
 ▪ Passive insider information
 ▪ Site surveillance
 ▪ Outside sources (Internet, libraries, etc.)
• Identify site vulnerabilities across various operational conditions and states:
 ▪ Operational conditions (operational versus non-operational)
 ▪ Target material configurations (reactor refueling versus operations)
 ▪ Response force alert levels
• Identify sources of vulnerabilities
 ▪ Experts (site personnel, police)
 ▪ Path analysis
 ▪ Previous vulnerability studies and performance tests

Example: Identify Site Vulnerabilities

Vulnerability: At times the guard force is divided

• Scenario conditions:
 ▪ 2 guards at entry portal
 ▪ 3 guards at guard house

Results from Path Analysis
Adversaries = 5 (DBT)
Guard Force = 7

Expected Results from vulnerability based scenario

Task Plan A:
3 Adversaries vs. 2 Guards
Surprise advantage to adversaries

Task Plan B:
3 Adversaries vs. 3 Guards
Surprise advantage to adversaries
Exploit Identified Site Vulnerabilities

- Determine how an adversary could exploit site identified vulnerabilities
- Create a list of essential tasks that must be accomplished for the attack to succeed
- Create task plans describing how an adversary team can perform each task within resource constraints
 - Who is involved?
 - What are they doing as a function of time?
 - How are they performing each step?
 - What equipment are they using?
 - How are they transporting the equipment?

Example: **Exploit** Site Vulnerabilities

- Example
 - Vulnerability: At times the response force is divided
 - List of tasks to exploit vulnerability
 A. Ambush Guard Post
 B. Attack remaining Response Force
 C. Enter Material Storage Building and remove material
 D. Escape to safe house
Task Plan A

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Activity</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>A1, A2, and A3 drives vehicle up to the gate</td>
<td>00:40</td>
</tr>
<tr>
<td>00:40</td>
<td>A1 waits until P1 and P2 arrive at vehicle</td>
<td>00:50</td>
</tr>
<tr>
<td>00:50</td>
<td>A1 engages P1 while A2 and A3 exit vehicle</td>
<td>00:55</td>
</tr>
<tr>
<td>00:55</td>
<td>A2 and A3 engage P2</td>
<td>01:00</td>
</tr>
<tr>
<td>01:00</td>
<td>A2 and A3 breach gate</td>
<td>01:30</td>
</tr>
<tr>
<td>01:30</td>
<td>A1 drives vehicle through gate and picks up A2 and A3</td>
<td>01:45</td>
</tr>
</tbody>
</table>

Task Plan B

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Activity</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:45</td>
<td>A1 drives to guardhouse and A1, A2, and A3 dismount</td>
<td>03:00</td>
</tr>
<tr>
<td>03:00</td>
<td>A1, A2 and A3 surround guardhouse and wait for guards to exit</td>
<td>03:30</td>
</tr>
<tr>
<td>03:30</td>
<td>Adversary team engages guards in guardhouse</td>
<td>04:00</td>
</tr>
</tbody>
</table>
Exploit Identified Site Vulnerabilities (cont’d.)

- Combine task plans into a master attack plan / scenario description, adjusting task activities to:
 - Meet DBT and other constraints
 - Determine how to get adversary team from offsite to the target
 - Achieve synchronization between teams
 - Coordinate progress at key steps (e.g., the point of detection)
 - Refine task time estimates
 - Identify key locations for chance encounters with security or site personnel
 - Consider ambushes and diversions as ways of delaying/defeating the guards and response force
 - Identify:
 - Target selection, minimum delay path, and breaching techniques

Review and Select Final Scenarios

- Include stakeholders in the review and selection process
- Review and select final scenarios based on scoping agreement criteria
 - Are all analysis objectives covered?
 - Are conditions and states covered adequately?
 - Do the scenarios address several means of adversary approach (on foot, in land vehicles, on water, or by air) that apply, based on the DBT?
 - Are scenarios credible, limited by threats within the DBT, etc.?
Review and Select Final Scenarios (cont’d)

- Consider impact of colluding insider
 - Modify appropriate detection, delay, response force time, or response force numbers to reflect what insider can accomplish
 - Examples of collusion scenarios
 - Detection: Insider tampers with alarm communication lines
 - Delay: Insider opens vault door at time of attack
 - Response:
 - Insider activates an emergency alarm in a different location to divert response force
 - Insider detonates explosive at armory

Summary

- Scenario analysis is a methodology for analyzing system effectiveness, P_E, by considering several alternative possible adversary attacks (scenarios)
- System effectiveness, P_E, of PPS is represented by effectiveness against several distinct adversary scenarios