Summary of Impact Analyses of Renewable Energy Technologies on Aviation and Airports

Clifford K. Ho

Concentrating Solar Technologies Department
Sandia National Laboratories
ckho@sandia.gov
Overview

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary
Introduction

• Multiple agencies are interested in evaluating potential safety impacts from emerging energy technologies
 • Air Force
 • Impact on training missions at Nevada Test and Training Range
 • FAA
 • California Energy Commission
 • Solar power plant Applications for Certification
 • National Academies – Transportation Research Board
 • Synthesis Report on “Investigating Safety Impacts of Energy Technologies on Airports and Aviation”
Air Force White Papers

• Series of white papers covering renewable energy technologies (PV, CPV, CSP, etc.)
 • Potential impacts include the following:
 • Ground-based and airborne radar interference
 • Radio frequency interference
 • Glare impact on pilots and sensors
 • Infrared emissions (“thermal signature”)
 • Overflight restrictions
 • Sonic overpressure
Overview

• Introduction

• Glint and Glare Analysis

• Thermal Signature Analysis

• Summary
Introduction

• Glint and glare may cause unwanted visual impacts
 • Glint is momentary flash of light; glare is more continuous source of excessive brightness
 • Visual impacts range from flash blindness to retinal burn

• Need quantified analysis of glint/glare to reduce uncertainties associated with visual impacts of CSP installations
 • Industry, military, government agencies (e.g., California Energy Commission, Transportation Research Board)
Examples of Glint/Glare

Solar One
(10 MW\textsubscript{e} power tower, Daggett, CA)

Central Receiver Test Facility
(SNL, NM)

National Solar Thermal Test Facility
(SNL, NM)

Kramer Junction
(150 MW\textsubscript{e} parabolic trough, Mojave Desert, CA)
Glare Types

Specular Reflection
(polished surfaces; e.g., mirrors)

Diffuse Reflection
(rough surfaces; e.g., receivers)
Specular Reflections

- Point Focus and Line Focus Collectors

- Dish
- Heliostat
- Parabolic Trough
Specular Glare

- Potential for glint and glare from collectors
 - Off-axis; misalignment; moving to or from stow/standby
 - End-loss and spillage for troughs

Off-axis Dish

Off-axis Trough

End-Loss from Trough
Previous Work
(Pertaining to CSP Glint and Glare)

 • Performed analysis and tests of glare from heliostats and receivers using retinal burn metrics from Sliney and Freasier (1973)
 • Determined exclusion zones and developed beam control strategies

 • Developed safety metrics for both retinal burn and temporary flash blindness using data from multiple literature sources
• 2010: Ho, C.K., C.M. Ghanbari, and R.B. Diver, ASME Energy Sustainability Conference
 • Developed analytical equations to evaluate specular and diffuse glare using retinal burn and temporary flash blindness metrics; performed validation tests

• 2010: Ho, C.K. and S.S. Khalsa (this paper)
 • Derived explicit equations to determine distances that cause retinal burn and temporary flash blindness for specular glare
 • Introduced web-based tool
Glare Analysis
Retinal Irradiance

- Need to calculate
 - Power entering eye
 - Function of irradiance at the cornea (front of eye)
 - Subtended angle of glint/glare source
Potential Impacts

From Ho et al. (2010)
Analysis Steps
(from ASME ES2010 paper)

• Calculate retinal irradiance using equations in paper for specular or diffuse reflections
 • Collector optical properties, DNI, pupil diameter

• Calculate subtended angle using equations in paper
 • For diffuse reflections, source is given by size of receiver or reflecting source
 • For specular reflections, use equations

• Identify potential impact using plot of retinal irradiance vs. subtended source angle
Comparison to Safety Metrics

\[\rho = 0.94 \]

RMS slope error = 1 mrad

Aperture = 12 m

Focal length = 7 m

50 m viewing distance

⇒ Retinal irradiance = 5 W/cm\(^2\)

⇒ Subtended source angle = 1.8 mrad
Distances for Retinal Burn and Temporary After-Image

\[\rho = 0.94, \text{ RMS slope error} = 1 \text{ mrad (5 mrad for trough)}, \text{ DNI} = 0.1 \text{ W/cm}^2 \]

- **Dish** (D=12 m, f=7 m)
- **Parabolic Trough** (D=5 m, f=1.5 m)
- **Heliostat** (D=12 m, f=500 m)
- **Flat Mirror** (D=12 m)

Distance (m)

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Dish</th>
<th>Parabolic Trough</th>
<th>Heliostat</th>
<th>Flat Mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>1.6</td>
<td>1.4</td>
<td>3,500</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td></td>
<td></td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td>8,600</td>
</tr>
</tbody>
</table>

\[D = \text{aperture}, \ f = \text{focal length} \]
Glare Web Tool
PHLUX Web Tool
Photographic Flux Tools for Solar Glare and Flux Mapping

Solar Glare and Flux Mapping Tools

Measurement of reflected solar irradiance is receiving significant attention by industry, military, and government agencies to assess potential impacts of glint and glare from growing numbers of solar power installations around the world. In addition, characterization of the incident solar flux distribution on central receivers for concentrating solar power applications is important to monitor and maintain system performance.

This website provides tools to analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn). In addition, tools are being developed that will evaluate the irradiance distribution on a central receiver. Empirical results are based on digital photographs uploaded by the user. Instructions are included in each of the links below.

Contacts:
Clifford K. Ho
c kho@sandia.gov
(505) 844-2364

Sahib S. Khalsa
skhalsa@sandia.gov
(505) 844-1229
Empirical Analysis

Digital photographs are taken of the glare

Images are uploaded with relevant information
Selection Tools

Uploading Images... Done!

Sun Image

Reflection Image
Recent Examples of Glare from CSP Facilities
Concentrated Glare from Troughs
Nevada Solar One

Drive-by video of Nevada Solar One Glare, Boulder City, NV (6/29/10, noon)
Kramer Junction

Air Force Flyovers (F-16 and C-12) of Kramer Junction Parabolic Trough Plant in 2010 (CA)
Helicopter Flyover of NSTTF

November 10, 2010
Glare Analysis
Overview

- Introduction
- Glint and Glare Analysis
- Thermal Signature Analysis
- Summary
Infrared Emissions

- Heated objects can emit infrared radiation that may interfere with infrared sensors.
Spectral blackbody emissive power as a function of wavelength and temperature (adapted from Incropera and DeWitt, 1985).
Example of Irradiance Received from Hot Photovoltaic Array

Irradiance received at a distance of 1000 m from a 3740 m² CPV array at a temperature of 100 C.
Overview

• Introduction

• Glint and Glare Analysis

• Thermal Signature Analysis

• Summary
Summary

• Glint and Glare can cause unwanted visual impacts
 • Analytical models and safety metrics have been developed to quantify glint and glare
 • Models have been validated with test data
 • Web tool has been developed

• Infrared emissions from heated objects can interfere with infrared sensors
 • Provide quantification of spectral irradiance for different technologies
 • Temperature and time dependent (e.g., cooling of tower receiver)
Summary

• Identification and quantification of potential impacts will help agencies to develop appropriate mitigations, measures, and/or requirements
 • California Energy Commission
 • Air Force
 • FAA
 • National Academies – Transportation Research Board